

Association Between Aflatoxin M₁ Excreted in Human Urine Samples with the Consumption of Milk and Dairy Products

Sabran Mohd Redzwan · Jamaluddin Rosita ·

Abdul Mutualib Mohd Sokhini ·

Abdul Rahman Nurul Aqilah

Received: 20 June 2012/Accepted: 25 September 2012/Published online: 7 October 2012
© Springer Science+Business Media New York 2012

Abstract This study aimed to find the association between urinary aflatoxin M₁ level and milk and dairy products consumption. Of 160 morning urine samples collected, aflatoxin M₁ was detected in 61.3 % samples (n = 98) [mean \pm SD = 0.0234 \pm 0.0177 ng/mL; range = 0–0.0747 ng/mL]. Of these positive samples, 67.3 % (n = 66) had levels above the limit of detection. Respondents with intake of milk and dairy products above median (67.79 g/day) had significantly high level of AFM₁ compared to those with low intake. A significant and positive association ($\varphi = 0.286$) was found between milk and dairy products consumption and urinary aflatoxin M₁ level.

Keywords Aflatoxin · Aflatoxin M₁ · Milk and dairy products consumption · Malaysia

Aflatoxin is one of the mycotoxins and human exposure to this contaminant has become a global issue as it is a potent carcinogen and linked to the development of liver cancer (IARC 1993). Aflatoxin is a toxic compound produced naturally by *Aspergillus* species of fungi mainly *Aspergillus flavus*, *Aspergillus paraciticus* and *Aspergillus nomius* (Reddy et al. 2011). Aflatoxin M₁ (AFM₁), which is a hydroxylated metabolite of AFB₁ produced from animal and human metabolism after the ingestion of AFB₁, can be found in urine, milk and blood (de Romero et al. 2010). Since aflatoxin is associated with the etiology of

hepatocellular carcinoma (HCC), Sun et al. (1999) indicated that the risk of HCC is increased by 3.3-folds in those with detectable urinary AFM₁ (above 3.6 ng/L) and infected chronically with hepatitis B virus (HBV).

The main route of aflatoxin exposure among human is through the diets (de Romero et al. 2010) and milk products are among the top foods that are commonly found to be contaminated with aflatoxin. A recent study by Sadia et al. (2012) for instance found that AFM₁ is detected in milk and sweets in Pakistan. In fact, 32.3 % and 78.3 % of milk and sweets respectively had levels above the European Union permissible level (Sadia et al. 2012). Although there is no data on the contamination level of aflatoxin reported in milk and dairy products in Malaysia, these food commodities are among the top five daily consumed foods in Malaysia (Norimah et al. 2008). Additionally, the latest national food consumption statistic indicated high prevalence of condensed milk intake among Malaysians (MOH 2006). Since AFM₁ can be found in milk, the humans are at risk to aflatoxin exposure as they are used in manufacture of many products such as cheese, powdered milk and other dairy products. Given that as the epitome for our research, the purpose of this study was to screen the level of AFM₁ detected in human urine samples. Besides, this study also aimed to find the association between milk and dairy products consumption and the level of AFM₁ detected in human urine samples.

Materials and Methods

This research had received ethical approval from the Medical Research Ethics Committee of Universiti Putra Malaysia. There were 160 non-academic and support staffs from a faculty in Universiti Putra Malaysia who participated

S. Mohd Redzwan · J. Rosita (✉) · A. M. Mohd Sokhini ·

A. R. Nurul Aqilah

Department of Nutrition and Dietetics Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

e-mail: rosita@medic.upm.edu.my

in this research. Prior to samples collection, written informed consent was obtained. An aliquot of 15 mL morning urine sample was collected and frozen at -80°C .

The respondents' milk and dairy products consumption was assessed through a semi-quantitative food frequency questionnaire (FFQ). The items in the FFQ were foods that are normally consumed and used by Malaysian such as fresh milk and condensed milk. The conversion of food frequency list to the amount of food intake (g/day) was calculated as described by Norimah et al. (2008) with the references used from the Atlas of Food Exchanges and Portion Sizes (Suzana et al. 2002) and Nutrient Composition of Malaysian Foods (Tee et al. 1997).

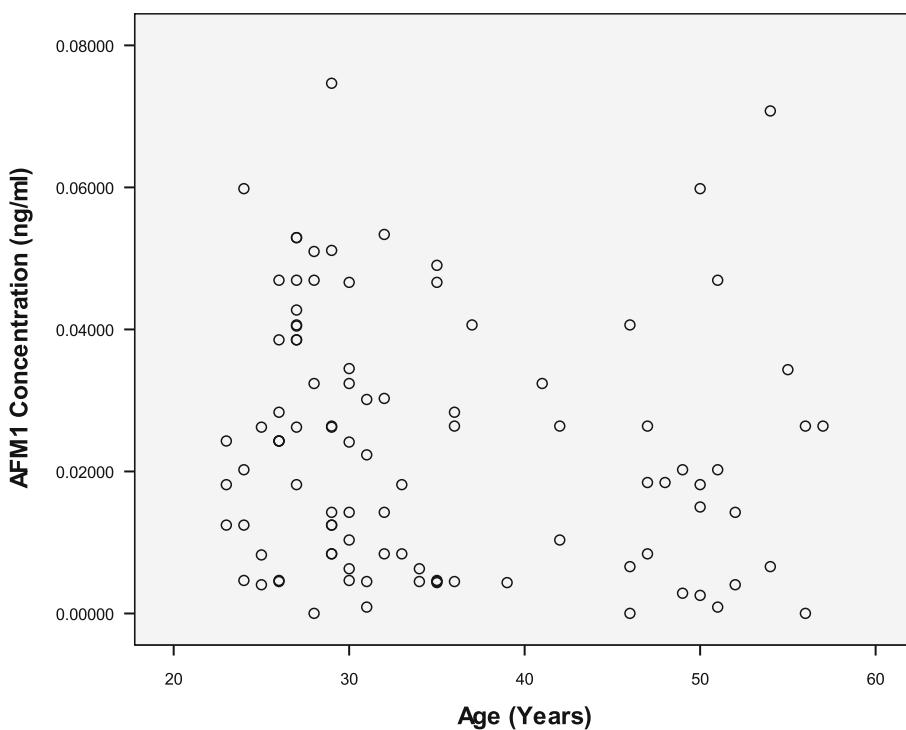
The level of AFM₁ was determined using the Helica Aflatoxin M₁ ELISA kit (Helica Biosystem, Inc., Santa Ana, CA, USA). In order to remove debris and precipitate, urine samples were centrifuged at 3,000g for 5 min (Kubota Centrifuge Model 2810, Tokyo, Japan) and supernatant was then used for the determination of AFM₁ accordingly as specified in the manual kit. An automated microplate washer (Drop ELISA Washer, RADIM, Italy) was used during the washing step. The absorbance was measured at 450 nm using microplate reader (SIRIO S Microplate Reader, RADIM, Italy). As validation, urine samples were spiked with 0.15 ng/mL AFM₁ standard. The fortified samples were covered from light and kept overnight at 2–8°C. The level of AFM₁ was measured as mentioned above. The limit of detection (LOD) was 0.011 ng/mL and the recovery ranged from 73 % to 88 % and was within the range stated on the provided manual. For the value below LOD, half of the LOD value was assigned. The urinary AFM₁ concentration was expressed as pg/g Cr (creatinine) in order to correct for variations in urine dilution among individual samples. The creatinine level was measured using Roche Cobas C311 Chemistry Analyzer (Roche Diagnostics Limited, West Sussex, England).

The milk and dairy products consumption was categorized into low and high categories based on the respondents' median intake. Mann–Whitney *U* test was used to see if there was significant difference between milk and dairy products consumption and urinary AFM₁ level. Then, the correlation between these two variables was assessed based on Pearson Chi-square association.

Results and Discussion

There were 74 male and 86 female respondents, with the average age of 35.2 ± 10.15 years (Range = 23–57 years) who participated in this study. Of 160 morning urine samples collected, 61.3 % (n = 98) of the samples were found to have AFM₁ (mean \pm SD = 0.0234 ± 0.0177 ng/mL; range = 0–0.0747 ng/mL). Moreover, 67.3 % of the

positive samples (n = 66) had AFM₁ level above LOD. Besides that, all the respondents either with detected urinary AFM₁ or not had normal kidney function based on the creatinine level.


The AFM₁ values in urine observed in this study were low than those previously reported in China (Qian et al. 1994; Zhu et al. 1987), Ghana (Jolly et al. 2006) and Sierra Liones (Jonsyn-Ellis 2000). For instance, Qian et al. (1994) reported that the AFM₁ level detected in the urine varied from 0.17 to 5.2 ng/mL, which was 7–70 times higher than ours. However, the level found in this study was higher compared to the urinary AFM₁ level detected by de Romero et al. (2010) in Brazil (Range = 1.8–39.9 pg/mL) and Desalegn et al. (2011) in Sri Lanka (Mean = 0.012 ng/mL). These evidences show that aflatoxin exposure is ubiquitous. Due to that, it can be postulated that respondents from this study were moderately exposed to aflatoxin.

On the other hand, we found that AFM₁ was detected mostly among the younger respondents (below 40 years) rather than the older ones (Fig. 1). Nevertheless, there was no significant correlation between these two variables. It is indeed corroborated with the finding by Sun et al. (1999) as AFM₁ levels detected in male with hepatitis B are not correlated with age. Furthermore, Sun et al. (1999) indicated that the highest level of AFM₁ was found in men, age ranged of 30–45 years.

A positive association was found between AFM₁ detected in human urine samples and dietary AFB₁ intake (Zhu et al. 1987). There was between 1.23 % and 2.18 % of dietary AFB₁ found to be present as AFM₁ in human urine samples (Zhu et al. 1987). Therefore, based on the equation of $y = 0.007 + 0.0214x$ [where y represents the amount of AFM₁ in urine samples (ng/mL) while x represent dietary AFB₁ intake ($\mu\text{g/day}$)] by Sabran et al. (2012) and average body weight of Malaysian adult of 62.65 kg (Azmi et al. 2009), the estimated dietary AFB₁ exposure computed from the mean (0.0234 ng/mL) was 0.0122 $\mu\text{g/day}$ kg body weight. The value was slightly low compared to the one indicated by Sabran et al. (2012) and the range stated by Liu and Wu (2010) in Malaysia. The period of collecting the samples might be one of the reasons for such observation. Jonsyn-Ellis (2000) for instance found a significant contribution of seasonal variation with the level of aflatoxin detected in human biological samples. In fact in Malaysia, humans are probably exposed to aflatoxin especially during the festive season such as during *Eidul Fitr* and holidays (Reddy et al. 2011), where certain foods that signify the celebrations are abundant and frequently consumed.

Our finding showed that respondents with milk and dairy products consumption above median (67.79 g/day) had significantly high level of AFM₁ compared to its counterpart (Table 1). Additionally, there was also statistically significant and positive association between milk

Fig. 1 Distribution of urinary AFM₁ according to respondents' age

Table 1 The AFM₁ level according to the consumption of milk and dairy products (n = 98)

Milk and dairy products consumption ^a	AFM ₁ level, pg/g Cr (mean \pm SD)	p value ^b
Low	2.00 \pm 2.38	0.027
High	2.67 \pm 2.27	

^a Classification is based on median intake of 67.79 g/day

^b Value obtained from Mann–Whitney *U* test

and dairy products consumption with the level of AFM₁ detected in urine samples (Table 2). The finding is in contrast to a study that revealed lack of association between urinary AFM₁ and food consumption (de Romero et al. 2010). In fact, milk and dairy products are one of the commodities that have high probability to be contaminated by aflatoxin and its contamination levels have been documented (Beltran et al. 2011; Heshmati and Milani 2010; Kim et al. 2000). Even though the data is not available yet in Malaysia and considering that high incidence of AFM₁ in milks and dairy products is a serious public health problem, a maximum permissible level of 5 μ g/kg has been adopted in the Malaysia Food Regulations 1985 as one of the enforcements to control the contamination of aflatoxin (FoSIM 2012).

Although aflatoxin is a controllable risk factor in foods, we believe that some of the contaminated food might “escape” and persist in the food chain, where humans can be directly or indirectly exposed to this contaminant. Milk for example can be contaminated by aflatoxin when the

animals such as cow, goat, and sheep are fed with AFB₁-contaminated feed. As this happens, the ingested AFB₁ is hydrolyzed into AFM₁, where it can be excreted in milk. Without realizing the incidence, the milk is used in manufacturing dairy products such as cheese, powdered milk and other milk-based products. Albeit many steps are taken during the food processing such as boiling and frying or even pasteurization, Kabak (2009) indicated that aflatoxin can still be found in the food commodities. One of the reasons is aflatoxin is heat-resistant and has high decomposition temperature, ranging from 237 to 306°C (Kabak 2009). For instance, following pasteurization at 62°C for 30 min, Purchase et al. (1972) only observed 32 % of AFM₁ reduction in the milk. Surprisingly, as the cycle goes on, humans at the end of food chain are vulnerable to be exposed to this toxic compound through these contaminated products. Indeed, newborn baby and children are at greater risk as the milk and dairy products are the main source of diets during their period of growth.

There were some limitations of the present study that should be noted for conducting a better research in the future. Firstly, we are only looking at the association of milk and dairy products consumption with the urinary AFM₁ level. It is noteworthy that further research on other “suspected” food commodities such as nuts, cereals and spices can provide expressive contribution toward exposure to aflatoxin through the diets. Secondly, the level of aflatoxin in the milk and dairy product was not investigated. Due to that, it is suggestible to investigate the level of aflatoxin in this food commodity; hence the data can

Table 2 Correlation between milk and dairy products consumption and urinary AFM₁ level (pg/g Cr)

Milk and dairy products	Median intake (g/day)	Pearson Chi-square ^a	Correlation ^b
Fresh/UHT milk	16.67	1.366	0.118
Condensed milk	5.71	0.384	−0.063
Evaporated milk	0.72	5.900*	0.245
Powdered milk	0.13	0.582	−0.077
Cheese	0.18	0.326	0.058
Others ^c	6.00	0.582	0.077
Overall	67.79	8.030**	0.286

* Significant at $p < 0.05$; ** Significant at $p < 0.01$

^a Computed only for a 2×2 based on median intake and urinary AFM₁ level (1.53 pg/g Cr)

^b Correlation is based on Phi value of association

^c Includes yoghurt, dadih and other dairy products

provide a better and clear picture regarding human dietary exposure to aflatoxin. Thirdly, by investigating other aflatoxin biomarkers such as aflatoxin albumin adduct in serum can permit us to make a better assessment and validation on the extent of human exposure to aflatoxin in Malaysia.

In essence, the consumption of milk and dairy products cannot be said as the only source of occurrence of AFM₁ in the urine. However, it is believed that these findings provide an interesting insight regarding the occurrence of aflatoxin biomarker in human biological sample in Malaysia and its association with food consumption. Even though the levels detected are not that high and AFM₁ is less mutagenic and carcinogenic as compared to AFB₁, long term exposure to this contaminant could pose detrimental health effects. The incidence of aflatoxicosis case involving humans that happened around two decades ago (Lye et al. 1995) should be taken as a lesson for us to be more cautious about fungal and aflatoxin contamination. By creating the awareness about the harmful effect of aflatoxin among the public, it is possible to prevent the contamination. Furthermore, an early intervention should be adopted in order to prevent the “flow” of aflatoxin in the food chain.

Acknowledgments Mohd Redzwan Sabran would like to thank the Ministry of Higher Education, Malaysia for financially supported his postgraduate studies.

Conflict of interest All the authors have declared that they do not have any potential conflicts of interest.

References

Azmi MY, Junaidah R, Siti Mariam A, Safiah MY, Fatimah S, Norimah AK et al (2009) Body Mass Index (BMI) of adults: findings of the Malaysian Adult Nutrition Survey. Malays J Nutr 15:97–119

Beltran E, Ibanez M, Sancho JV, Cortes MA, Yusa V, Hernandez F (2011) UPLC-MS/MS highly sensitive determination of aflatoxins, the aflatoxin metabolite M1 and ochratoxin A in baby food and milk. Food Chem 126:737–744

de Romero CA, Ferreira TRB, dos Santos Dias CT, Calori-Dominques MA, da Gloria EM (2010) Occurrence of AFM₁ in urine samples of a Brazilian population and association with food consumption. Food Control 21:554–558

Desalegn B, Nanyakkara S, Harada KH, Hitomi T, Chandrajith R, Karunaratne U et al (2011) Mycotoxin detection in urine samples from patients with chronic kidney disease of uncertain etiology in Sri Lanka. Bull Environ Contam Toxicol 87:6–10

Food Safety Information System of Malaysia (FoSIM) (2012) Food Regulations 1985. Resource document. Ministry of Health. http://fsis2.moh.gov.my/fosimv2/HOM/frmHOMFARSecDetail.aspx?FAS_ID=45&FAC_ID=21&FAD_ID=594#. Accessed 14 February 2012

Heshmati A, Milani JM (2010) Contamination of UHT milk by aflatoxin M₁ in Iran. Food Control 21:19–22

IARC (1993) Aflatoxin. In: Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC monograph on the evaluation of carcinogenic risk to humans, vol 56. International Agency for Research on Cancer, Lyon, pp 245–395

Jolly P, Jiang Y, Ellis W, Awuah R, Nnedu O, Philips T et al (2006) Determinants of aflatoxin levels in Ghanaians: sociodemographic factors, knowledge of aflatoxin and food handling and consumption practices. Int J Hyg Environ Health 209:345–358

Jonsyn-Ellis FE (2000) Seasonal variation in exposure frequency and concentration levels of aflatoxin and ochratoxins in urine samples of boys and girls. Mycopathologia 152:35–40

Kabak B (2009) The fate of mycotoxins during thermal food processing. J Sci Food Agric 89:549–554

Kim EK, Shon DH, Ryu D, Park JW, Hwang HJ, Kim YB (2000) Occurrence of aflatoxin M₁ in Korean dairy products determined by ELISA and HPLC. Food Addit Contam 17:59–64

Liu Y, Wu F (2010) Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environ Health Perspect 118:818–824

Lye MS, Ghazali AA, Mohan J, Alwin N, Nair RC (1995) An outbreak of acute hepatic encephalopathy due to severe aflatoxicosis in Malaysia. Am J Trop Med Hyg 53:68–72

Ministry of Health, MOH (2006) Food consumption statistic of Malaysia 2002/2003 for adult population aged 18 to 19 years. Food Safety and Quality Division, Ministry of Health Malaysia, Kuala Lumpur

Norimah AK, Safiah M, Jamal K, Haslinda S, Zuhaida H, Rohida S et al (2008) Food consumption patterns: findings from the Malaysian Adult Nutrition Survey (MANS). Malays J Nutr 14:25–39

Purchase LFH, Steyn M, Rinsma R, Tustin RC (1972) Reduction of the aflatoxin M content of milks by processing. Food Cosmet Toxicol 10:383–387

Qian GS, Ross RK, Yu MC, Yuan JM, Gao YT, Henderson BE et al (1994) A follow-up study of urinary markers of aflatoxin exposure and liver cancer risk in Shanghai, People's Republic of China. Cancer Epidemiol Biomarkers Prev 3:3–10

Reddy KRN, Farhana NI, Salleh B (2011) Occurrence of *Aspergillus* spp. and aflatoxin B₁ in Malaysian foods used for human consumption. J Food Sci 76:T99–T104

Sabran, MR, Jamaluddin, R, Abdul Mutualib, MS (2012) Estimation of dietary AFB₁ exposure through the level of AFM₁ detected in human urine samples: A preliminary study. In: Chye FY, Lee JS, Siew CK, Noorakmar AW, Ramlah MR (eds) Proceedings on international conference on food science and nutrition. Universiti Malaysia Sabah, Sabah, pp 962–971

Sadia A, Jabbar MA, Deng Y, Hussain EA, Riffat S, Naveed S et al (2012) A survey of aflatoxin M1 in milk and sweets of Punjab, Pakistan. *Food Control* 26:235–240

Sun Z, Lu P, Gail MH, Pee D, Zhang Q, Ming L et al (1999) Increased risk of hepatocellular carcinoma in male hepatitis B surface antigen carriers with chronic hepatitis who have detectable urinary aflatoxin metabolite M1. *Hepatology* 30: 379–383

Suzana S, Noor Aini MY, Nik Shanita S, Rafidah G, Roslina A (2002) Atlas of food exchanges and portion sizes, 2nd edn. MDC Publishers Sdn Bhd, Kuala Lumpur

Tee ES, Mohd Ismail N, Mohd Nasir A, Kathijah I (1997) Nutrient composition of Malaysian foods, 4th edn. Institute for Medical Research, Kuala Lumpur

Zhu JQ, Zhang LS, Hu X, Xiao Y, Chen JS, Xu YC et al (1987) Correlation of dietary aflatoxin B₁ levels with excretion of aflatoxin M₁ in human urine. *Cancer Res* 47:1848–1852